3.1251 \(\int \frac{1}{(a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)}} \, dx\)

Optimal. Leaf size=170 \[ -\frac{2 b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{f \left (a^2+b^2\right ) \sqrt{b c-a d}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f (b+i a) \sqrt{c-i d}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f (-b+i a) \sqrt{c+i d}} \]

[Out]

ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]]/((I*a + b)*Sqrt[c - I*d]*f) - ArcTanh[Sqrt[c + d*Tan[e + f*x]]
/Sqrt[c + I*d]]/((I*a - b)*Sqrt[c + I*d]*f) - (2*b^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/Sqrt[b*c -
 a*d]])/((a^2 + b^2)*Sqrt[b*c - a*d]*f)

________________________________________________________________________________________

Rubi [A]  time = 0.421791, antiderivative size = 170, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {3574, 3539, 3537, 63, 208, 3634} \[ -\frac{2 b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{f \left (a^2+b^2\right ) \sqrt{b c-a d}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f (b+i a) \sqrt{c-i d}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f (-b+i a) \sqrt{c+i d}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]]/((I*a + b)*Sqrt[c - I*d]*f) - ArcTanh[Sqrt[c + d*Tan[e + f*x]]
/Sqrt[c + I*d]]/((I*a - b)*Sqrt[c + I*d]*f) - (2*b^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/Sqrt[b*c -
 a*d]])/((a^2 + b^2)*Sqrt[b*c - a*d]*f)

Rule 3574

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/
(c^2 + d^2), Int[(a + b*Tan[e + f*x])^m*(c - d*Tan[e + f*x]), x], x] + Dist[d^2/(c^2 + d^2), Int[((a + b*Tan[e
 + f*x])^m*(1 + Tan[e + f*x]^2))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \frac{1}{(a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)}} \, dx &=\frac{\int \frac{a-b \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{a^2+b^2}+\frac{b^2 \int \frac{1+\tan ^2(e+f x)}{(a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)}} \, dx}{a^2+b^2}\\ &=\frac{\int \frac{1+i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{2 (a-i b)}+\frac{\int \frac{1-i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{2 (a+i b)}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{\left (a^2+b^2\right ) f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 (i a-b) f}-\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 (i a+b) f}+\frac{\left (2 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{\left (a^2+b^2\right ) d f}\\ &=-\frac{2 b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{\left (a^2+b^2\right ) \sqrt{b c-a d} f}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-\frac{i c}{d}+\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{(a-i b) d f}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1+\frac{i c}{d}-\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{(a+i b) d f}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{(i a+b) \sqrt{c-i d} f}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{(i a-b) \sqrt{c+i d} f}-\frac{2 b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{\left (a^2+b^2\right ) \sqrt{b c-a d} f}\\ \end{align*}

Mathematica [A]  time = 0.398061, size = 158, normalized size = 0.93 \[ \frac{-\frac{2 b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{\sqrt{b c-a d}}+\frac{(b-i a) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{\sqrt{c-i d}}+\frac{(b+i a) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{\sqrt{c+i d}}}{f \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

((((-I)*a + b)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/Sqrt[c - I*d] + ((I*a + b)*ArcTanh[Sqrt[c + d*
Tan[e + f*x]]/Sqrt[c + I*d]])/Sqrt[c + I*d] - (2*b^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/Sqrt[b*c -
 a*d]])/Sqrt[b*c - a*d])/((a^2 + b^2)*f)

________________________________________________________________________________________

Maple [B]  time = 0.088, size = 4446, normalized size = 26.2 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e)),x)

[Out]

2/f*b^2/(a^2+b^2)/((a*d-b*c)*b)^(1/2)*arctan((c+d*tan(f*x+e))^(1/2)*b/((a*d-b*c)*b)^(1/2))-1/f*d^2/(a^2+b^2)/(
c^2+d^2)^(3/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(
2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c+1/f/d^2/(a^2+b^2)*(c^2+d^2)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c
+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c-1/f/d/(a^2+b^2)/(c^2+d^
2)^(3/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2
+d^2)^(1/2)-2*c)^(1/2))*a*c^4+1/4/f/d/(a^2+b^2)/(c^2+d^2)*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2
)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c^2+1/f/d^2/(a^2+b^2)/(c^2+d^2)/(2*(c^2+d^
2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1
/2))*b*c^4+1/f/d^2/(a^2+b^2)/(c^2+d^2)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/
2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c^3+1/f/d/(a^2+b^2)/(c^2+d^2)^(3/2)/(2*(c^2+d^2)
^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2
))*a*c^4+1/4/f/d^2/(a^2+b^2)/(c^2+d^2)*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+
(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c^3-1/f/d^2/(a^2+b^2)/(c^2+d^2)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)
^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c^3+1/
4/f*d/(a^2+b^2)/(c^2+d^2)^(3/2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^
2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c+3/f*d/(a^2+b^2)/(c^2+d^2)^(3/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arct
an((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a*c^2-3/f*d/(a^2+b^
2)/(c^2+d^2)^(3/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2
))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a*c^2-1/4/f/d/(a^2+b^2)/(c^2+d^2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/
2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c^2-1/f/d^2/(a^2+b^2)/(c^2+d^2)/
(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/
2)-2*c)^(1/2))*b*c^4-1/4/f/d^2/(a^2+b^2)/(c^2+d^2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*t
an(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c^3-1/f/d^2/(a^2+b^2)*(c^2+d^2)^(1/2)/(2*(c^2+d^2
)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/
2))*b*c+1/f*d^2/(a^2+b^2)/(c^2+d^2)^(3/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c
^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c-1/4/f/d/(a^2+b^2)/(c^2+d^2)^(3/2)*ln(d*tan(f*x+e)
+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c^3-1
/4/f*d/(a^2+b^2)/(c^2+d^2)^(3/2)*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d
^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c-1/f/d/(a^2+b^2)/(c^2+d^2)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arc
tan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a*c^2+1/f/d/(a^2+b
^2)/(c^2+d^2)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/
2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a*c^2+1/4/f/d/(a^2+b^2)/(c^2+d^2)^(3/2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d
^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c^3-1/4/f/(a^2+b^2)/(c^2+
d^2)^(3/2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2
)^(1/2)+2*c)^(1/2)*b*c^2+1/f/(a^2+b^2)/(c^2+d^2)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2
)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c-1/f/d^2/(a^2+b^2)/(2*(c^2+d^2)^(1/2)
-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c
^2-2/f*d^3/(a^2+b^2)/(c^2+d^2)^(3/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+
d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a+1/f*d/(a^2+b^2)/(c^2+d^2)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)^
(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a-1/f/(a^
2+b^2)/(c^2+d^2)^(3/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^
(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c^3+1/4/f/(a^2+b^2)/(c^2+d^2)*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)
*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c-2/f/(a^2+b^2)/(c^2+d^2)/(2*(
c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2
*c)^(1/2))*b*c^2+2/f/(a^2+b^2)/(c^2+d^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2
*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c^2+1/4/f/(a^2+b^2)/(c^2+d^2)^(3/2)*ln(d*tan(f*x+e)+
c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c^2-1/
4/f*d^2/(a^2+b^2)/(c^2+d^2)^(3/2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+
d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b+1/4/f*d/(a^2+b^2)/(c^2+d^2)*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/
2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a-1/f*d^2/(a^2+b^2)/(c^2+d^2)/
(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/
2)-2*c)^(1/2))*b-1/4/f*d/(a^2+b^2)/(c^2+d^2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x
+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a+1/f*d^2/(a^2+b^2)/(c^2+d^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/
2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b+1/4/f*d^2/
(a^2+b^2)/(c^2+d^2)^(3/2)*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/
2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b+2/f*d^3/(a^2+b^2)/(c^2+d^2)^(3/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*
(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a-1/4/f/d^2/(a^2+b^2)*ln(
d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(
1/2)*b*c+1/f/d^2/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2
*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c^2-1/4/f/(a^2+b^2)/(c^2+d^2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^
2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c+1/f/(a^2+b^2)/(c^2+d^2)^
(3/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^
2)^(1/2)-2*c)^(1/2))*b*c^3-1/f/(a^2+b^2)/(c^2+d^2)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+
e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b*c-1/f*d/(a^2+b^2)/(c^2+d^2)^(1/2)/(2
*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)
-2*c)^(1/2))*a+1/4/f/d^2/(a^2+b^2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2
+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \tan{\left (e + f x \right )}\right ) \sqrt{c + d \tan{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*tan(f*x+e))**(1/2)/(a+b*tan(f*x+e)),x)

[Out]

Integral(1/((a + b*tan(e + f*x))*sqrt(c + d*tan(e + f*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \tan \left (f x + e\right ) + a\right )} \sqrt{d \tan \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate(1/((b*tan(f*x + e) + a)*sqrt(d*tan(f*x + e) + c)), x)